RYERSON UNIVERSITY

Department of Electrical and Computer Engineering

ELE 635 Communication Systems

Frequency Modulation

Winter 2015

- Time- and frequency-domain description of angle modulated signals
 - Phase Modulated (PM) signals
 - Frequency Modulated (FM) signals
 - Bandwidth of FM signals
- Effects of nonlinearities on modulated signals
 - Amplitude Modulated (AM) signals
 - Frequency Modulated (FM) signals
- Generation of FM signals
 - Indirect Method
- FM Stereo Broadcasting
 - Stereo signal multiplexing
 - Stereo signal demodulation
 - Tips, tricks, standards ...

Time- and frequency-domain description of angle modulated signals

Modulation

m(t) = modulating signal

c(t) = carrier signal

 $\varphi(t)$ = modulated signal

Modulation

$$\varphi(t) = \frac{a(t)}{a(t)} \cos \frac{\theta(t)}{a(t)}$$

(possibly) time-varying amplitude

(possibly) time-varying phase

$\varphi(t)$ represents a **rotating phasor** of:

- time-varying amplitude a(t)
- generalized phase $\theta(t)$
- instantaneous frequency $f_i(t)$:

$$f_i(t) = \frac{1}{2\pi} \frac{d}{dt} \theta(t)$$

Unmodulated Carrier

An unmodulated carrier is of the form:

$$a(t) = A_c,$$

$$\theta(t) = 2\pi f_c t + \theta_0$$

such that:

$$\varphi(t) = A_c \cos(2\pi f_c t + \theta_0)$$

with:

$$f_i(t) = \frac{1}{2\pi} \frac{d}{dt} \theta(t) = f_c$$

- An unmodulated carrier has **constant amplitude** and **constant** $f_i(t)$.
- $\varphi(t)$ carries no information-all components are independent of m(t).

Amplitude Modulation

Amplitude Modulation:

$$a(t) = g[m(t)]$$

$$\theta(t) = 2\pi f_c t + \theta_0$$

$$f_i(t) = f_c$$

such that:

$$\varphi_{AM}(t) = g[m(t)]\cos(2\pi f_c t + \theta_0)$$

Information contained in m(t) is embedded in the time-varying amplitude.

Generation and Demodulation

of FM Signals

Angle Modulation: either the phase or the frequency of the carrier wave is varied by m(t) while the amplitude of the carrier wave is constant.

$$\varphi(t) = A_c \cos \theta(t)$$

where:

$$A_c = constant$$

$$\theta(t) = g\big[m(t)\big]$$

Information contained in m(t) is embedded in the **time-varying phase**.

Angle Modulation

Phase Modulation (PM):

$$a(t) = A_c$$

$$\theta(t) = 2\pi f_c t + K_p m(t) + \theta_0$$

$$f_i(t) = f_c + \frac{K_p}{2\pi} \frac{d}{dt} m(t)$$

such that:

$$\varphi_{PM}(t) = A_c \cos(2\pi f_c t + K_p m(t) + \theta_0)$$

Information contained in m(t) is embedded in the generalized phase:

 $\theta(t)$ is proportional to m(t)

Angle Modulation

Frequency Modulation (FM):

$$a(t) = A_c$$

$$\theta(t) = 2\pi f_c t + K_f \int_0^t m(\lambda) d\lambda + \theta_0$$

$$f_i(t) = f_c + \frac{K_f}{2\pi} m(t)$$

such that:

$$\varphi_{\rm FM}(t) = A_c \cos(2\pi f_c t + K_f \int_0^t m(\lambda) d\lambda + \theta_0)$$

Information contained in m(t) is embedded in the instantaneous frequency:

 $f_i(t)$ is proportional to m(t)

Angle Modulation

or we can consider PM as a special case of FM where:

$$f_i(t) \sim \frac{d}{dt} m(t) \qquad \qquad \boxed{\frac{d}{dt}} \qquad \qquad \boxed{\text{Frequency}} \qquad \qquad \varphi_{\text{PM}}(t)$$

Need only one PM or FM —— FM is the most common angle modulation; Study FM

Consider the modulating waveform m(t)

Determine the corresponding **PM** and **FM** waveforms for:

$$K_f = K_p = 2\pi$$

$$\theta_o = 0$$

$$f_c = 1000 \; \text{Hz}$$

$$\varphi_{\rm PM}(t) = A_c \cos(2\pi f_c t + K_p m(t) + \theta_0)$$

$$f_i(t) = rac{1}{2\pi} rac{d}{dt} \theta(t) = \left\{ egin{array}{ll} f_c + rac{d}{dt} m(t), & {
m if} \ {
m PM} \end{array}
ight.$$

$$\varphi_{\rm PM}(t) = A_c \cos(2\pi f_c t + K_p m(t) + \theta_0)$$

$$f_i(t) = rac{1}{2\pi} rac{d}{dt} \theta(t) = \left\{ egin{array}{ll} f_c + rac{d}{dt} m(t), & {
m if} \ {
m PM} \end{array}
ight.$$

$$\varphi_{\rm PM}(t) = A_c \cos(2\pi f_c t + K_p m(t) + \theta_0)$$

$$f_i(t) = rac{1}{2\pi} rac{d}{dt} \theta(t) = \left\{ egin{array}{ll} f_c + rac{d}{dt} m(t), & {
m if} \ {
m PM} \end{array}
ight.$$

Effects of **Nonlinearities**

$$\varphi_{\text{FM}}(t) = A_c \cos(2\pi f_c t + K_f \int_0^t m(\lambda) d\lambda + \theta_0)$$

$$f_i(t) = rac{1}{2\pi} rac{d}{dt} heta(t) = \left\{ egin{array}{c} f_c + m(t), & ext{if } \mathbf{FM}. \end{array}
ight.$$

$$\varphi_{\rm FM}(t) = A_c \cos(2\pi f_c t + K_f \int_0^t m(\lambda) d\lambda + \theta_0)$$

$$f_i(t) = rac{1}{2\pi} rac{d}{dt} heta(t) = \left\{ egin{array}{c} f_c + m(t), & ext{if } \mathbf{FM} \end{array}
ight.$$

$$\varphi_{\rm PM}(t) = A_c \cos(2\pi f_c t + K_p m(t) + \theta_0)$$

$$\varphi_{\rm FM}(t) = A_c \cos(2\pi f_c t + K_f \int_0^t m(\lambda) d\lambda + \theta_0)$$

$$f_i(t) = rac{1}{2\pi} rac{d}{dt} \theta(t) = \left\{ egin{array}{ll} f_c + rac{d}{dt} m(t), & {
m if} \ {
m PM} \\ f_c + m(t), & {
m if} \ {
m FM} \end{array}
ight.$$

Consider the modulating waveform m(t)

Consider the modulating waveform m(t)

Objective: Determine $\Phi_{FM}(f)$, spectrum of the FM signal $\varphi_{FM}(t)$ generated by an arbitrary modulating signal m(t).

No easy task! ... as FM is a non-linear operation approximation

Let's start with the simple case of a single-tone modulation:

$$m(t) = A_m \cos \omega_m t$$

such that:

$$\varphi_{\text{FM}}(t) = A_c \cos\left(\omega_c t + K_f \int_0^t m(\lambda) d\lambda\right)$$

with the instantaneous frequency of the FM signal given as:

$$f_i(t) = f_c + \frac{K_f}{2\pi} m(t)$$

$$= f_c + \frac{K_f A_m}{2\pi} \cos \omega_m t$$

$$= f_c + \Delta f \cos \omega_m t$$

Observe that:

$$\Delta f = \frac{K_f A_m}{2\pi}$$

represents the maximum frequency deviation of the instantaneous frequency $f_i(t)$ from the unmodulated carrier frequency f_c

$$\Delta f \sim A_m = \max_t [m(t)]$$

The maximum frequency deviation Δf is independent of f_m but rather is a function of the maximum signal amplitude.

23

FM: Bandwidth estimation

Let us now rewrite the FM signal $\varphi_{FM}(t)$ by computing the time-varying phase:

$$\theta(t) = 2\pi \int_0^t f_i(\lambda) d\lambda$$

$$= 2\pi \int_0^t \left[f_c + \frac{K_f A_m}{2\pi} \cos \omega_m \lambda \right] d\lambda$$

$$= 2\pi \left[f_c \lambda + \frac{K_f A_m}{2\pi} \frac{\sin \omega_m \lambda}{\omega_m} \Big|_0^t \right]$$

$$= 2\pi f_c t + \frac{K_f A_m}{2\pi f_m} \sin \omega_m t$$

$$= 2\pi f_c t + \frac{\Delta f}{f_m} \sin \omega_m t$$

Using the simplified notation:

$$\beta = \frac{\Delta f}{f_m} = \frac{\Delta \omega}{\omega_m} = \frac{K_f A_m / 2\pi}{f_m}$$

we express the FM signal as:

$$\varphi_{FM}(t) = A_c \cos \theta(t)$$

$$= A_c \cos \left(2\pi f_c t + \frac{\Delta f}{f_m} \sin \omega_m t\right)$$

$$= A_c \cos \left(2\pi f_c t + \beta \sin \omega_m t\right)$$

$$= A_c \cos \omega_c t \cos (\beta \sin \omega_m t) - A_c \sin \omega_c t \sin (\beta \sin \omega_m t)$$

Generation and Demodulation

of FM Signals

$$\varphi_{\rm FM}(t) = A_c \cos \omega_c t \cos (\beta \sin \omega_m t) - A_c \sin \omega_c t \sin (\beta \sin \omega_m t)$$

Case 1 Narrowband FM with β small (typically $\beta < 0.3$)

$$\cos(\beta \sin \omega_m t) \approx 1$$
 and $\sin(\beta \sin \omega_m t) \approx \beta \sin \omega_m t$

Therefore:

$$\varphi_{\rm FM}(t) \approx A_c \cos \omega_c t - A_c \beta \sin \omega_c t \sin \omega_m t$$

How does the narrowband FM (NBFM) case with $m(t) = A_m \cos \omega_m t$ compare with the single-tone AM signal?

$$\varphi_{AM}(t) = \left[A_c + A_m \cos \omega_m t \right] \cos \omega_c t$$

$$= A_c \left[1 + \frac{A_m}{A_c} \cos \omega_m t \right] \cos \omega_c t$$

$$= A_c \left[1 + \mu \cos \omega_m t \right] \cos \omega_c t$$

$$= A_c \cos \omega_c t + A_c \mu \cos \omega_m t \cos \omega_c t$$

How does the narrowband FM (NBFM) case with $m(t) = A_m \cos \omega_m t$ compare with the single-tone AM signal?

$$\varphi_{AM}(t) = \left[A_c + A_m \cos \omega_m t \right] \cos \omega_c t$$

$$= A_c \left[1 + \frac{A_m}{A_c} \cos \omega_m t \right] \cos \omega_c t$$

$$= A_c \left[1 + \mu \cos \omega_m t \right] \cos \omega_c t$$

$$= A_c \cos \omega_c t + A_c \mu \cos \omega_m t \cos \omega_c t$$

$$\varphi_{\rm AM}(t) = A_c \cos \omega_c t + A_c \mu \cos \omega_m t \cos \omega_c t$$

$$\varphi_{\text{NBFM}}(t) = A_c \cos \omega_c t - A_c \beta \sin \omega_m t \sin \omega_c t$$

$$\varphi_{\rm AM}(t) = A_c \cos \omega_c t + A_c \mu \cos \omega_m t \cos \omega_c t$$

$$\varphi_{\text{NBFM}}(t) = A_c \cos \omega_c t - A_c \beta \sin \omega_m t \sin \omega_c t$$

Observations

- Single-tone AM and NBFM are similar, yet they are distinct modulation schemes.
- In view of the similarity between the AM modulation index μ and $\beta = (\Delta f / f_m)$ we will refer to β as the **modulation index** for the FM signals (applicable only for single-tone modulation).

$$\varphi_{\text{NBFM}}(t) = A_c \cos \omega_c t - A_c \beta \sin \omega_m t \sin \omega_c t$$

Generating NBFM signals

Spectrum of a single-tone modulated NBFM signal

Effects of

Nonlinearities

$$\varphi_{\text{NBFM}}(t) = A_c \cos \omega_c t - A_c \beta \sin \omega_m t \sin \omega_c t$$

$$= A_c \cos \omega_c t - \frac{A_c \beta}{2} \left[\cos(\omega_c - \omega_m) t - \cos(\omega_c + \omega_m) t \right]$$

Spectrum of a single-tone modulated NBFM signal

$$\varphi_{\text{NBFM}}(t) = A_c \cos \omega_c t - A_c \beta \sin \omega_m t \sin \omega_c t$$

$$= A_c \cos \omega_c t - \frac{A_c \beta}{2} \left[\cos(\omega_c - \omega_m)t - \cos(\omega_c + \omega_m)t \right]$$

So far all what we have achieved was to determine the spectrum of a single-tone modulated NBFM signal ... As we stated at the onset computing the spectrum for the more general cases is no easy task!

RYERSON UNIVERSITY ELE 635 – Winter 2015 32

So far all what we have achieved was to determine the spectrum of a single-tone modulated NBFM signal ... As we stated at the onset computing the spectrum for the more general cases is no easy task!

Let us consider a more general case with an arbitrary m(t) with:

Effects of

Nonlinearities

$$a(t) = \int_0^t m(\lambda) \, \lambda$$

and express the FM signal in a form using the simplified notation:

$$\varphi_{FM}(t) = A_c \cos(\omega_c t + K_f \int_0^t m(\lambda) d\lambda)$$
$$= A_c \cos(\omega_c t + K_f a(t))$$

We can also express $\varphi_{\rm FM}(t)$ as:

$$\varphi_{\text{FM}}(t) = A_c \cos\left(\omega_c t + K_f \int_0^t m(\lambda) d\lambda\right)$$

$$= A_c \cos\left(\omega_c t + K_f a(t)\right)$$

$$= \mathbf{Re} \left\{ A_c e^{j[\omega_c t + K_f a(t)]} \right\}$$

$$= \mathbf{Re} \left\{ A_c \left[1 + j K_f a(t) - K_f^2 \frac{a^2(t)}{2!} + \cdots \right] e^{j\omega_c t} \right\}$$

$$= A_c \left[\cos \omega_c t - K_f a(t) \sin \omega_c t - \frac{K_f^2}{2!} a^2(t) \cos \omega_c t + \cdots \right]$$

Assume that m(t) is bandlimited to B_m Hz. Then:

$$\varphi_{\rm FM}(t) = A_c \left[\cos \omega_c t - K_f a(t) \sin \omega_c t - \frac{K_f^2}{2!} a^2(t) \cos \omega_c t - \frac{K_f^3}{3!} a^3(t) \sin \omega_c t + \cdots \right]$$

a(t) is bandlimited to B_m Hz

RYERSON UNIVERSITY

FM: Bandwidth estimation

Assume that m(t) is bandlimited to B_m Hz. Then:

Effects of

$$\varphi_{\mathrm{FM}}(t) = A_c \Big[\cos \omega_c t - K_f a(t) \sin \omega_c t - \frac{K_f^2}{2!} a^2(t) \cos \omega_c t - \frac{K_f^3}{3!} a^3(t) \sin \omega_c t + \cdots \Big]$$

$$a(t) \text{ is bandlimited to } B_m \text{ Hz}$$

$$a^2(t) \text{ is bandlimited to } 2B_m \text{ Hz}$$

Assume that m(t) is bandlimited to B_m Hz. Then:

Assume that m(t) is bandlimited to B_m Hz. Then:

$$\varphi_{\mathrm{FM}}(t) = A_c \Big[\cos \omega_c t - K_f a(t) \sin \omega_c t - \frac{K_f^2}{2!} a^2(t) \cos \omega_c t - \frac{K_f^3}{3!} a^3(t) \sin \omega_c t + \cdots \Big]$$

$$a(t) \text{ is bandlimited to } B_m \text{ Hz}$$

$$a^2(t) \text{ is bandlimited to } 2B_m \text{ Hz}$$

$$a^3(t) \text{ is bandlimited to } 3B_m \text{ Hz}$$

$$\vdots$$

$$a^n(t) \text{ is bandlimited to } nB_m \text{ Hz}$$

The FM signal $\varphi_{\rm FM}(t)$ is **not bandlimited**!...

RYERSON UNIVERSITY ELE 635 – Winter 2015 38

What about the NBFM case? NBFM (with single-tone modulation)

$$eta = rac{\Delta f}{f_m} = rac{K_f A_m}{2\pi f_m}$$
 is small

is small

What about the NBFM case? NBFM (with single-tone modulation)

$$eta = rac{\Delta f}{f_m} = rac{K_f A_m}{2\pi f_m} \hspace{0.5cm} | \hspace{0.5cm} ext{is small} \hspace{0.5cm} | \hspace{0.5cm} K_f \hspace{0.5cm} | \hspace{0.5cm} ext{is small}$$

$$\varphi_{\text{FM}}(t) = A_c \left[\cos \omega_c t - K_f a(t) \sin \omega_c t - \frac{K_f^2}{2!} a^2(t) \cos \omega_c t - \frac{K_f^3}{3!} a^3(t) \sin \omega_c t + \cdots \right]$$

$$\approx A_c \cos \omega_c t - A_c K_f a(t) \sin \omega_c t$$

as
$$K_f\gg K_f^2\gg K_f^3\gg\cdots$$

Given that

$$\varphi_{\rm FM}(t) \approx A_c \cos \omega_c t - A_c K_f a(t) \sin \omega_c t$$

 B_{T} transmission bandwidth of the NBFM signal $\varphi_{\mathrm{FM}}(t)$

$$B_{\rm T} = 2$$
 Bandwidth of [$a(t)$]
= 2 Bandwidth of [$m(t)$]
= $2B_m$

which is what we determined earlier.

Given that

$$\varphi_{\rm FM}(t) \approx A_c \cos \omega_c t - A_c K_f a(t) \sin \omega_c t$$

 B_{T} transmission bandwidth of the NBFM signal $\varphi_{\mathrm{FM}}(t)$

$$B_{\rm T} = 2$$
 Bandwidth of [$a(t)$]
= 2 Bandwidth of [$m(t)$]
= 2 B_m

which is what we determined earlier.

As we will show shortly the result that for NBFM signals $B_{\rm T}=2B_m$ will be valid for all NBFM signals generated by bandlimited modulating signals.

44

FM: Bandwidth estimation

Consider the modulating waveform m(t)

 $\varphi_{\mathrm{FM}}(t)$ t

Frequency: $f_i = f_c + \frac{K_f}{2\pi} m(t_k) = f_k$

 $\Phi_{\mathrm{FM}}(f)$ Signal : $\cos(2\pi f_k t) \, \Piig(2B_m(t-t_k)ig)$

Consider the modulating waveform m(t)

Effects of

Consider the modulating waveform m(t)

Effects of

Nonlinearities

$$f_{min} = f_c + \frac{K_f}{2\pi} \min_t [m(t)] = f_c - \frac{K_f}{2\pi} m_p$$

$$f_{max} = f_c + \frac{K_f}{2\pi} \max_t [m(t)] = f_c + \frac{K_f}{2\pi} m_p$$

$$B_{\text{FM}} \approx \left[f_{max} - f_{min} \right] + 2(2B_m)$$

$$= 2\frac{K_f}{2\pi} m_p + 2(2B_m)$$

$$= 2(\Delta f + 2B_m)$$

$$B_{\text{FM}} \approx \left[f_{max} - f_{min} \right] + 2(2B_m)$$

$$= 2\frac{K_f}{2\pi} m_p + 2(2B_m)$$

$$= 2(\Delta f + 2B_m)$$

- This approximation to $B_{\rm FM}$ is not a very good one:
 - in the narrowband FM case $\Delta f \approx 0$ so that $B_{\text{NBFM}} \approx 2B_m$.

$$B_{\text{FM}} \approx \left[f_{max} - f_{min} \right] + 2(2B_m)$$

$$= 2\frac{K_f}{2\pi} m_p + 2(2B_m)$$

$$= 2(\Delta f + 2B_m)$$

- This approximation to $B_{\rm FM}$ is not a very good one:
 - in the **narrowband FM** case $\Delta f \approx 0$ so that $B_{\rm NBFM} \approx 2B_m$.
- A better approximation is given by **Carson's Rule**:

$$B_{\rm FM} \approx 2(\Delta f + B_m)$$

FM: Bandwidth estimation - Carson's Rule

$$B_{\rm FM} \approx 2(\Delta f + B_m)$$

Define:

Modulation Index:

$$\beta = \frac{\Delta f}{B_m} = \frac{\Delta f}{f_m}$$

Deviation Index:

$$\mathcal{D} = \frac{\Delta f}{B_m}$$

FM: Bandwidth estimation - Carson's Rule

$$B_{\rm FM} \approx 2(\Delta f + B_m)$$

Define:

Modulation Index:

$$\beta = \frac{\Delta f}{B_m} = \frac{\Delta f}{f_m}$$

Deviation Index:

$$\mathcal{D} = \frac{\Delta f}{B_m}$$

For single-tone modulation only !!!

FM: Bandwidth estimation - Carson's Rule

$$B_{\rm FM} \approx 2(\Delta f + B_m)$$

Single Tone Modulation:

$$\beta = \frac{\Delta f}{f_m}$$

$$B_{\rm FM} \approx 2B_m(1+\beta)$$

Wideband Signal Modulation:

$$\mathcal{D} = \frac{\Delta f}{B_m}$$

$$B_{\rm FM} \approx 2B_m(1+\mathcal{D})$$

Generation and Demodulation

of FM Signals

Determining a closed-form expression for the spectrum of signal $\varphi_{\rm FM}(t)$ for arbitrary modulation/deviation index values is not possible. Therefore we will investigate the single-tone modulation case:

$$m(t) = A_m \cos \omega_m t$$

$$\varphi_{\text{FM}}(t) = A_c \cos\left(\omega_c t + K_f \int_0^t m(\lambda) d\lambda\right)$$

$$= A_c \cos\left(2\pi f_c t + \beta \sin \omega_m t\right)$$

$$= \mathbf{Re} \left\{ A_c e^{j[\omega_c t + \beta \sin \omega_m t]} \right\}$$

$$= \mathbf{Re} \left\{ A_c e^{j\beta \sin \omega_m t} e^{j\omega_c t} \right\}$$

$$\varphi_{\rm FM}(t) = \mathbf{Re} \Big\{ A_c \, e^{j\beta \sin \omega_m t} \, e^{j\omega_c t} \Big\}$$

The complex exponential function $e^{j\beta\sin\omega_m t}$ is periodic, and therefore it can be expanded in the Fourier series:

$$e^{j\beta\sin\omega_m t} = \sum_{n=-\infty}^{\infty} C_n e^{jn\omega_m t}$$

Generation and Demodulation

of FM Signals

$$\varphi_{\rm FM}(t) = \mathbf{Re} \Big\{ A_c \, e^{\,j\beta \sin \omega_m t} \, e^{\,j\omega_c t} \Big\}$$

The complex exponential function $e^{j\beta \sin \omega_m t}$ is periodic, and therefore it can be expanded in the Fourier series:

$$e^{j\beta\sin\omega_m t} = \sum_{n=-\infty}^{\infty} C_n e^{jn\omega_m t}$$

with

$$C_n = \frac{\omega_m}{2\pi} \int_{-\pi/\omega_m}^{\pi/\omega_m} e^{j\beta \sin \omega_m t} e^{-jn\omega_m t} dt$$

$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{j(\beta \sin x - nx)} dx, \quad \text{with} \quad x = \omega_m t$$

$$= J_n(\beta)$$

Generation and Demodulation

of FM Signals

$$\varphi_{\rm FM}(t) = \mathbf{Re} \Big\{ A_c \, e^{j\beta \sin \omega_m t} \, e^{j\omega_c t} \Big\}$$

The complex exponential function $e^{j\beta \sin \omega_m t}$ is periodic, and therefore it can be expanded in the Fourier series:

$$e^{j\beta\sin\omega_m t} = \sum_{n=-\infty}^{\infty} C_n e^{jn\omega_m t}$$

with

$$C_n = \frac{\omega_m}{2\pi} \int_{-\pi/\omega_m}^{\pi/\omega_m} e^{j\beta \sin \omega_m t} e^{-jn\omega_m t} dt$$

$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{j(\beta \sin x - nx)} dx, \quad \text{with} \quad x = \omega_m t$$

$$= J_n(\beta) \qquad \qquad \text{What is this } J_n(\beta) ?$$

J: Bessel function of 1st kind.

n: order

ß: argument

Bessel function of 1st kind "J", order n and argument β

RYERSON UNIVERSITY

ELE 635 – Winter 2015

Bessel function of 1st kind (J), order n and argument β

Shortly, we will return to discuss the properties of Bessel functions and methods of evaluating them. But for the time being assume that $J_n(\beta)$ are readily available so that we can proceed with evaluating the spectrum of the FM signal.

RYERSON UNIVERSITY ELE 635 – Winter 2015 67

$$\varphi_{\text{FM}}(t) = \text{Re}\left\{A_c e^{j\beta \sin \omega_m t} e^{j\omega_c t}\right\}$$

$$= \text{Re}\left\{A_c \left[\sum_n J_n(\beta) e^{jn\omega_m t}\right] e^{j\omega_c t}\right\}$$

$$= \text{Re}\left\{A_c \sum_n J_n(\beta) e^{j(\omega_c + n\omega_m)t}\right\}$$

$$= A_c \sum_n J_n(\beta) \cos(\omega_c + n\omega_m)t$$

The last expression is in a form suitable for computing the spectrum of the FM signal.

$$\varphi_{\text{FM}}(t) = A_c \sum_n J_n(\beta) \cos(\omega_c + n\omega_m)t$$

$$\Phi_{\text{FM}}(f) = \mathcal{F}[\varphi_{\text{FM}}(t)]$$

$$= \mathcal{F}[A_c \sum_n J_n(\beta) \cos(\omega_c + n\omega_m)t]$$

$$= A_c \sum_n J_n(\beta) \mathcal{F}[\cos(\omega_c + n\omega_m)t]$$

$$= \frac{A_c}{2} \sum_n J_n(\beta) \left[\delta(f - (f_c + nf_m)) + \delta(f + (f_c + nf_m))\right]$$

$$\Phi_{\rm FM}(f) = \frac{A_c}{2} \sum_n J_n(\beta) \left[\delta \left(f - (f_c + n f_m) \right) + \delta \left(f + (f_c + n f_m) \right) \right]$$

$$\Phi_{\text{FM}}(f) = \frac{A_c}{2} \sum_{n} J_n(\beta) \left[\delta \left(f - (f_c + n f_m) \right) + \delta \left(f + (f_c + n f_m) \right) \right]$$

- There are an infinite number of sidebands not bandlimited.
- β and in turn $J_n(\beta)$ values determine the shape of $\Phi_{\rm FM}(f)$.

Properties of Bessel functions

• $J_n(\beta)$ is real-valued.

• $J_n(\beta)$ is real-valued.

Alternating even/odd symmetry:

$$J_n(\beta) = (-1)^n J_{-n}(\beta)$$

 $J_n(\beta)$ is real-valued.

Alternating even/odd symmetry:

$$J_n(\beta) = (-1)^n J_{-n}(\beta)$$

NBFM case: β small (β < 0.3) such that

$$J_0(\beta) \approx 1$$

$$J_n(\beta) \approx 0$$
, for $|n| \ge 2$

 $J_n(\beta)$ is real-valued.

Alternating even/odd symmetry:

$$J_n(\beta) = (-1)^n J_{-n}(\beta)$$

NBFM case: β small (β < 0.3) such that

$$J_0(\beta) \approx 1$$

$$J_0(\beta) \approx 1$$
 $J_1(\beta) = -J_{-1}(\beta) = \frac{\beta}{2}$ $J_0(\beta) \approx 0$, for $|n| \ge 2$

$$J_0(\beta) \approx 0, \text{ for } |n| \geq 2$$

Normalization:

$$\sum_{n=-\infty}^{\infty} J_n^2(\beta) = 1$$

Well-tabulated.

Bessel functions as a function of modulation index β and Bessel function order n.

Bessel functions are generated by differential equations.

Bessel functions are frequently encountered in a number of engineering problems. They are the solutions to the differential equation (e.g. wave equation, heat transfer equation):

$$x^{2}\frac{d^{2}y}{dx^{2}} + x\frac{dy}{dx} + (\lambda^{2}x^{2} - \nu^{2}) = 0$$

Remember that "sin" and "cos" are also solutions to the differential equation:

$$\frac{d^2y}{dx^2} + \mu^2 y = 0$$

NBFM (β < 0.3)

NBFM (β < 0.3)

$$J_1(\beta) = -J_{-1}(\beta) = \frac{\beta}{2}$$

NBFM (β < 0.3)

 $J_n(\beta) \approx 0$, for $|n| \ge 2$

NBFM (β < 0.3)

With $J_0(\beta) \approx 1$, $J_1(\beta) = -J_{-1} = \beta/2$, $J_n(\beta) \approx 0$, for $|n| \ge 2$, the expression for the FM signal:

$$\varphi_{\text{FM}}(t) = A_c \sum_n J_n(\beta) \cos(\omega_c + n\omega_m)t$$

becomes:

$$\varphi_{\text{FM}}(t) \approx A_c \cos \omega_c t + A_c J_1(\beta) \cos(\omega_c + \omega_m) t + A_c J_{-1}(\beta) \cos(\omega_c - \omega_m) t$$
$$= A_c \cos \omega_c t + \frac{A_c \beta}{2} \cos(\omega_c + \omega_m) t - \frac{A_c \beta}{2} \cos(\omega_c - \omega_m) t$$

NBFM (β < 0.3)

With $J_0(\beta) \approx 1$, $J_1(\beta) = -J_{-1} = \beta/2$, $J_n(\beta) \approx 0$, for $|n| \geq 2$, the expression for the FM signal:

$$\varphi_{\text{FM}}(t) = A_c \sum_{n} J_n(\beta) \cos(\omega_c + n\omega_m)t$$

becomes:

$$\varphi_{\rm FM}(t) \approx A_c \cos \omega_c t + A_c J_1(\beta) \cos(\omega_c + \omega_m) t + A_c J_{-1}(\beta) \cos(\omega_c - \omega_m) t$$

$$= A_c \cos \omega_c t + \frac{A_c \beta}{2} \cos(\omega_c + \omega_m) t - \frac{A_c \beta}{2} \cos(\omega_c - \omega_m) t$$

carrier

sideband at f_c + f_m sideband at f_c - f_m

NBFM (β < 0.3)

With $J_0(\beta) \approx 1$, $J_1(\beta) = -J_{-1} = \beta/2$, $J_n(\beta) \approx 0$, for $|n| \geq 2$, the expression for the FM signal:

$$\varphi_{\text{FM}}(t) = A_c \sum_n J_n(\beta) \cos(\omega_c + n\omega_m)t$$

becomes:

$$\varphi_{\rm FM}(t) \approx A_c \cos \omega_c t + A_c J_1(\beta) \cos(\omega_c + \omega_m) t + A_c J_{-1}(\beta) \cos(\omega_c - \omega_m) t$$

$$= A_c \cos \omega_c t + \frac{A_c \beta}{2} \cos(\omega_c + \omega_m) t - \frac{A_c \beta}{2} \cos(\omega_c - \omega_m) t$$

sideband at $f_c + f_m$ sideband at $f_c - f_m$ carrier

Transmission bandwidth: $B_T \approx 2 f_m$

WBFM

Infinite number of sidebands at $f_c \pm n f_m$

WBFM

Infinite number of sidebands at $f_c \pm n f_m$

Effects of

Magnitudes of sidebands decreases with increasing n, i.e., $|f| \gg f_c$

WBFM

- Infinite number of sidebands at $f_c \pm n f_m$
- Magnitudes of sidebands decreases with **increasing** $m{n}$, i.e., $|f|\gg f_c$
- The power in $\varphi_{\rm FM}(t)$ is contained within a finite bandwidth.

WBFM

- Infinite number of sidebands at $f_c \pm n f_m$
- Magnitudes of sidebands decreases with increasing n, i.e., $|f| \gg f_c$
- The power in $\varphi_{FM}(t)$ is contained within a finite bandwidth.
- **Carrier amplitude** $A_c J_0(\beta)$ is a function of the modulation index β .

WBFM

- Infinite number of sidebands at $f_c \pm n f_m$
- Magnitudes of sidebands decreases with increasing \emph{n} , i.e., $|f|\gg f_c$
- The power in $\varphi_{FM}(t)$ is contained within a finite bandwidth.
- Carrier amplitude $A_c J_0(\beta)$ is a function of the modulation index β .
- Total signal power

$$\overline{\varphi_{\mathrm{FM}}^2(t)} = \frac{A_c^2}{2} \sum_n J_n^2(\beta) = \frac{A_c^2}{2}$$

WBFM

Total signal power

$$\overline{\varphi_{\mathrm{FM}}^2(t)} = \frac{A_c^2}{2} \sum_n J_n^2(\beta) = \frac{A_c^2}{2}$$

FM Stereo

Broadcasting

FM Bandwidth estimation: Single tone modulation

WBFM

Total signal power

$$\overline{\varphi_{\text{FM}}^2(t)} = \frac{A_c^2}{2} \sum_n J_n^2(\beta) = \frac{A_c^2}{2}$$

We could have easily obtained this result from:

$$\varphi_{\rm FM}(t) = A_c \cos\left(\omega_c t + K_f \int_0^t m(\lambda) d\lambda\right)$$

WBFM

Total signal power

$$\overline{\varphi_{\mathrm{FM}}^2(t)} = \frac{A_c^2}{2} \sum_n J_n^2(\beta) = \frac{A_c^2}{2}$$

$$= \text{constant}$$

 $= P_{carrier} + P_{sideband}$

Distribution of the constant total signal power among the carrier and the sidebands will change as a function of the modulation index β .

WBFM

Changing the modulation index $\beta = \Delta f/f_m$

WBFM

Changing the modulation index $\beta = \Delta f/f_m$

Δf = constant

- change f_m
- $\beta \uparrow$ with $f_m \downarrow$
- · more spectral lines added.

WBFM

Changing the modulation index $\beta = \Delta f/f_m$

Δf = constant

change f_m

- $\beta \uparrow$ with $f_m \downarrow$
- more spectral lines added.

WBFM

Changing the modulation index $\beta = \Delta f/f_m$

Δf = constant

change f_m

- $\beta \uparrow$ with $f_m \downarrow$
- more spectral lines added.

change Δf $f_m = \text{constant}$

- $eta\uparrow$ with $\Delta f\uparrow$
- more spectral lines at constant spacing.

WBFM

Changing the modulation index $\beta = \Delta f / f_m$

Δf = constant

change f_m

- $\beta \uparrow$ with $f_m \downarrow$
- · more spectral lines added.

change Δf

 $f_m = \text{constant}$

- $eta\uparrow$ with $\Delta f\uparrow$
- more spectral lines at constant spacing.

WBFM

How many sideband are significant to determine B_T ?

WBFM

How many sideband are significant to determine B_T ?

A common rule:

A sideband is significant if its magnitude exceeds x-% of the unmodulated carrier.

WBFM

How many sideband are significant to determine B_T ?

A common rule:

A sideband is significant if its magnitude exceeds x-% of the unmodulated carrier.

- Unmodulated carrier: $A_c J_0(0)$
- Sideband terms: $A_c J_n(\beta)$

WBFM

How many sideband are significant to determine B_T ?

A common rule:

A sideband is significant if its magnitude exceeds x-% of the unmodulated carrier.

- Unmodulated carrier: $A_c J_0(0)$
- Sideband terms: $A_c J_n(\beta)$

For the **1-% case** determine the **sideband index** *n* such that

$$A_c J_n(\beta) \mid > \mid A_c J_0(0) \mid 10^{-2}$$

$$|J_n(\beta)| > |J_0(0)| 10^{-2}$$

$$|J_n(\beta)| > 10^{-2}$$
 since $J_0(0) = 1$

WBFM

How many sideband are significant to determine B_T ?

If n_{max} is the largest value of the sideband index satisfying the requirement:

$$|J_n(\beta)| > 10^{-2}$$

then we approximate the transmission bandwidth as

$$B_T = 2 n_{max} f_m$$

WBFM

How many sideband are significant to determine B_T ?

If n_{max} is the largest value of the sideband index satisfying the requirement:

$$|J_n(\beta)| > 10^{-2}$$

then we approximate the transmission bandwidth as

$$B_T = 2 n_{max} f_m$$

We use table of Bessel functions to determine the number of sidebands.

1-% rule

Table of Bessel Functions as a function of modulation index $\boldsymbol{\beta}$ and Bessel function order n.

		$J_0(\beta)$	$J_1(\beta)$	$J_2(\beta)$	$J_3(\beta)$	$J_4(\beta)$	$J_5(\beta)$	$J_6(\beta)$	$J_7(\beta)$	$J_8(\beta)$	$J_9(\beta)$
	0.0	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
β	0.2	0.99	0.10	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.4	0.96	0.20	0.02	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.6	0.91	0.29	0.04	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.8	0.85	0.37	0.08	0.01	0.00	0.00	0.00	0.00	0.00	0.00
	1.0	0.77	0.44	0.11	0.02	0.00	0.00	0.00	0.00	0.00	0.00
	1.2	0.67	0.50	0.16	0.03	0.01	0.00	0.00	0.00	0.00	0.00
	1.4	0.57	0.54	0.21	0.05	0.01	0.00	0.00	0.00	0.00	0.00
	1.6	0.46	0.57	0.26	0.07	0.01	0.00	0.00	0.00	0.00	0.00
	1.8	0.34	0.58	0.31	0.10	0.02	0.00	0.00	0.00	0.00	0.00
	2.0	0.22	0.58	0.35	0.13	0.03	0.01	0.00	0.00	0.00	0.00
	2.2	0.11	0.56	0.40	0.16	0.05	0.01	0.00	0.00	0.00	0.00
	2.4	0.00	0.52	0.43	0.20	0.06	0.02	0.00	0.00	0.00	0.00
	2.6	-0.10	0.47	0.46	0.24	0.08	0.02	0.01	0.00	0.00	0.00
	2.8	-0.19	0.41	0.48	0.27	0.11	0.03	0.01	0.00	0.00	0.00
	3.0	-0.26	0.34	0.49	0.31	0.13	0.04	0.01	0.00	0.00	0.00
	3.2	-0.32	0.26	0.48	0.34	0.16	0.06	0.02	0.00	0.00	0.00
	3.4	-0.36	0.18	0.47	0.37	0.19	0.07	0.02	0.01	0.00	0.00
	3.6	-0.39	0.10	0.44	0.40	0.22	0.09	0.03	0.01	0.00	0.00
	3.8	-0.40	0.01	0.41	0.42	0.25	0.11	0.04	0.01	0.00	0.00
	4.0	-0.40	-0.07	0.36	0.43	0.28	0.13	0.05	0.02	0.00	0.00
	4.2	-0.38	-0.14	0.31	0.43	0.31	0.16	0.06	0.02	0.01	0.00
	4.4	-0.34	-0.20	0.25	0.43	0.34	0.18	0.08	0.03	0.01	0.00
	4.6	-0.30	-0.26	0.18	0.42	0.36	0.21	0.09	0.03	0.01	0.00
	4.8	-0.24	-0.30	0.12	0.40	0.38	0.23	0.11	0.04	0.01	0.00
	5.0	-0.18	-0.33	0.05	0.36	0.39	0.26	0.13	0.05	0.02	0.01
	5.2	-0.11	-0.34	-0.02	0.33	0.40	0.29	0.15	0.07	0.02	0.01
	5.4	-0.04	-0.35	-0.09	0.28	0.40	0.31	0.18	0.08	0.03	0.01
	5.6	0.00	-0.33	-0.15	0.23	0.39	0.33	0.20	0.09	0.04	0.01
	5.8	0.09	-0.31	-0.20	0.17	0.38	0.35	0.22	0.11	0.05	0.02
	6.0	0.15	-0.28	-0.24	0.11	0.36	0.36	0.25	0.13	0.06	0.02

Effects of

Nonlinearities

10-% rule

Table of Bessel Functions as a function of modulation index $\boldsymbol{\beta}$ and Bessel function order n.

		$J_0(\beta)$	$J_1(\beta)$	$J_2(\beta)$	$J_3(\beta)$	$J_4(\beta)$	$J_5(\beta)$	$J_6(\beta)$	$J_7(\beta)$	$J_8(\beta)$	$J_9(\beta)$
	0.0	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.2	0.99	0.10	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.4	0.96	0.20	0.02	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.6	0.91	0.29	0.04	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.8	0.85	0.37	0.08	0.01	0.00	0.00	0.00	0.00	0.00	0.00
	1.0	0.77	0.44	0.11	0.02	0.00	0.00	0.00	0.00	0.00	0.00
	1.2	0.67	0.50	0.16	0.03	0.01	0.00	0.00	0.00	0.00	0.00
	1.4	0.57	0.54	0.21	0.05	0.01	0.00	0.00	0.00	0.00	0.00
	1.6	0.46	0.57	0.26	0.07	0.01	0.00	0.00	0.00	0.00	0.00
	1.8	0.34	0.58	0.31	0.10	0.02	0.00	0.00	0.00	0.00	0.00
	2.0	0.22	0.58	0.35	0.13	0.03	0.01	0.00	0.00	0.00	0.00
β	2.2	0.11	0.56	0.40	0.16	0.05	0.01	0.00	0.00	0.00	0.00
	2.4	0.00	0.52	0.43	0.20	0.06	0.02	0.00	0.00	0.00	0.00
	2.6	-0.10	0.47	0.46	0.24	0.08	0.02	0.01	0.00	0.00	0.00
	2.8	-0.19	0.41	0.48	0.27	0.11	0.03	0.01	0.00	0.00	0.00
	3.0	-0.26	0.34	0.49	0.31	0.13	0.04	0.01	0.00	0.00	0.00
	3.2	-0.32	0.26	0.48	0.34	0.16	0.06	0.02	0.00	0.00	0.00
	3.4	-0.36	0.18	0.47	0.37	0.19	0.07	0.02	0.01	0.00	0.00
	3.6	-0.39	0.10	0.44	0.40	0.22	0.09	0.03	0.01	0.00	0.00
	3.8	-0.40	0.01	0.41	0.42	0.25	0.11	0.04	0.01	0.00	0.00
	4.0	-0.40	-0.07	0.36	0.43	0.28	0.13	0.05	0.02	0.00	0.00
	4.2	-0.38	-0.14	0.31	0.43	0.31	0.16	0.06	0.02	0.01	0.00
	4.4	-0.34	-0.20	0.25	0.43	0.34	0.18	0.08	0.03	0.01	0.00
	4.6	-0.30	-0.26	0.18	0.42	0.36	0.21	0.09	0.03	0.01	0.00
	4.8	-0.24	-0.30	0.12	0.40	0.38	0.23	0.11	0.04	0.01	0.00
	5.0	-0.18	-0.33	0.05	0.36	0.39	0.26	0.13	0.05	0.02	0.01
	5.2	-0.11	-0.34	-0.02	0.33	0.40	0.29	0.15	0.07	0.02	0.01
	5.4	-0.04	-0.35	-0.09	0.28	0.40	0.31	0.18	0.08	0.03	0.01
	5.6	0.00	-0.33	-0.15	0.23	0.39	0.33	0.20	0.09	0.04	0.01
	5.8	0.09	-0.31	-0.20	0.17	0.38	0.35	0.22	0.11	0.05	0.02
	6.0	0.15	-0.28	-0.24	0.11	0.36	0.36	0.25	0.13	0.06	0.02

The transmission bandwidth B_T calculated using the x-% rule can also be presented in the form of a **universal curve** by normalizing the results obtained from the Bessel function tables shown in the previous slides with respect to the frequency deviation Δf and then plotting it versus β .

RYERSON UNIVERSITY ELE 635 – Winter 2015 105

NBFM Bandwidth estimation: Summary

Single Tone Modulation

$$m(t) = A_m \cos 2\pi f_m t$$

 $\beta = \frac{\Delta f}{f_m} = \frac{K_f A_m / 2\pi}{f_m}$

with $\beta < 0.3$

$$\varphi_{\text{NBFM}}(t) \approx A_c \cos \omega_c t - A_c \beta \sin \omega_m t \sin \omega_c t$$

Arbitrary m(t)

m(t) bandlimited B_m

$$\mathcal{D} = \frac{\Delta f}{B_m} = \frac{K_f m_p / 2\pi}{B_m}$$

with $\mathcal{D} < 0.3$ and $m_p = \max |m(t)|$

$$\varphi_{\text{NBFM}}(t) \approx A_c \cos \omega_c t - A_c \left[K_f \int m(\lambda) d\lambda \right] \sin \omega_c t$$

NBFM Bandwidth estimation: Summary

Single Tone Modulation

$$m(t) = A_m \cos 2\pi f_m t$$

 $\beta = \frac{\Delta f}{f_m} = \frac{K_f A_m / 2\pi}{f_m}$

with $\beta < 0.3$

 $\varphi_{\text{NBFM}}(t) \approx A_c \cos \omega_c t - A_c \beta \sin \omega_m t \sin \omega_c t$

Arbitrary m(t)

m(t) bandlimited B_m

$$\mathcal{D} = \frac{\Delta f}{B_m} = \frac{K_f m_p / 2\pi}{B_m}$$

with $\mathcal{D} < 0.3$ and $m_p = \max_t |m(t)|$

$$\varphi_{\text{NBFM}}(t) \approx A_c \cos \omega_c t - A_c \left[K_f \int m(\lambda) d\lambda \right] \sin \omega_c t$$

 $B_T \approx 2B_m$

WBFM Bandwidth estimation: Summary

Single Tone Modulation

$$m(t) = A_m \cos 2\pi f_m t$$

Arbitrary m(t)

m(t) bandlimited B_m

$$\varphi_{\text{FM}}(t) = A_c \sum_{n} J_n(\beta) \cos(\omega_c + n\omega_m) t$$

$$\varphi_{\rm FM}(t) = A_c \cos\left(\omega_c t + K_f \int_0^t m(\lambda) d\lambda\right)$$

Estimate B_T using:

- 1-% or 10-% rule as applicable (or the corresponding the universal curve), or
- · Carson's Rule.

Estimate B_T using:

- · Carson's rule, or
- the universal curve.

Comments on the Universal Curve:

- For arbitrary signals we can continue using the universal curve by replacing:
 - $_{\circ}$ Modulation index β with the deviation index \mathcal{D} .
 - $_{\circ}$ Modulating frequency f_{m} with signal bandwidth B_{m} .

Generation and Demodulation

of FM Signals

Comments on the Universal Curve:

- For arbitrary signals we can continue using the universal curve by replacing:
 - Modulation index β with the **deviation index** \mathcal{D} .
 - Modulating frequency f_m with **signal bandwidth** B_m .
- From the universal curve we observe that $B_T/\Delta f \approx 2$ as $\beta\uparrow$ (or $\mathcal{D}\uparrow$)

Therefore, for large β (or \mathcal{D}) we have:

$$B_T \approx 2\Delta f$$

Generation and Demodulation

of FM Signals

Comments on the Universal Curve:

From the universal curve we observe that $B_T/\Delta f \approx 20$ for $\beta = 0.1$

Therefore, for large $\beta = 0.1$ (or $\mathcal{D} = 0.1$) we have:

$$\left| \frac{B_T}{\Delta f} \right|_{\beta=0.1} = 20 \quad \Longrightarrow \quad B_T = 20 \times \Delta f \Big|_{\beta=0.1} = 20 \times \beta f_m \Big|_{\beta=0.1} = 20 \times (0.1) f_m = 2 f_m$$

 $B_T \approx 2 f_m$

Comments on Carson's Rule:

For intermediate values of β (or \mathcal{D}): use Carson's Rule

$$B_{\rm FM} \approx 2B_m(1+\beta) = 2(B_m + \Delta f)$$

RYERSON UNIVERSITY ELE 635 – Winter 2015 112

113

FM Bandwidth estimation: Further comments

Comments on Carson's Rule:

- B_T estimated using Carson's Rule approaches correct limits as $\beta \to 0$ and $\beta \uparrow$.
- $B_T(Carson) < B_T(1\%-rule)$ with maximum error for $\beta \approx 1$.
- Carson's Rule displays the effects of the two mechanism in the generation of FM signals.

North America commercial FM broadcasting:

- Maximum allowed frequency deviation $\Delta f = 75$ kHz.
- Bandwidth of modulating signal $B_m = 15 \text{ kHz}.$

Bandwidth estimate from Carson's Rule

$$B_T \approx 2(B_m + \Delta f) = 2(15 + 75) = 180 \text{ kHz}$$

North America commercial FM broadcasting:

- Maximum allowed frequency deviation $\Delta f = 75$ kHz.
- Bandwidth of modulating signal $B_m = 15 \text{ kHz}.$

Bandwidth estimate from Carson's Rule

$$B_T \approx 2(B_m + \Delta f) = 2(15 + 75) = 180 \text{ kHz}$$

Bandwidth estimate from 1-% Rule using the Universal Curve

Calculate the deviation ratio:

$$\mathcal{D} = \frac{\Delta f}{B_m} = \frac{75}{15} = 5$$

Bandwidth estimate from 1-% Rule using the Universal Curve

Bandwidth estimate from 1-% Rule using the Universal Curve

Bandwidth estimate from 1-% Rule using the Universal Curve

 $B_T pprox \mathbf{3.2}\,\Delta f = \mathbf{3.2} imes 75 = 240~\mathrm{kHz}$

$$\mathcal{D} = \frac{\Delta f}{B_m} = \frac{75}{15} = \boxed{5}$$

Bandwidth estimate from 1-% Rule using the Universal Curve

Observe that the result from the universal curve could have also been obtained from the table of Bessel functions by replacing β with \mathcal{D} and f_m with B_m .

$$B_T = 2 n_{max} B_m$$

= 2 (8) x (15)
= 240 kHz

Carson's Rule

1-% Rule using the Universal Curve

$$B_T = 180 \text{ kHz}$$

$$B_T=240~\mathrm{kHz}$$

- In practice for a bandwidth of 200 kHz is allocated to each FM transmitter.
- Carson's Rule underestimates B_T by 10%.
- 1%-rule using the universal curve overestimates B_T by 20%.